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Abstract
Mixed model estimation methods were used to fit individual-tree basal area growth models to tree and stand-level measurements available from

permanent plots established in naturally regenerated shortleaf pine (Pinus echinata Mill.) even-aged stands in western Arkansas and eastern

Oklahoma in the USA. As a part of the development of a comprehensive distance-independent individual-tree shortleaf pine growth and yield

model, several individual-tree annual basal area growth models were fitted to the data with the objective of selecting the model that has superior fit

to the data as well as attributes suitable for practical application in shortleaf pine stand simulator useful as an aid in forest management decision-

making. The distance-independent individual-tree model of Lynch et al. [Lynch, T.B., Hitch, K.L., Huebschmann, M.M., Murphy, P.A., 1999. An

individual-tree growth and yield prediction system for even-aged natural shortleaf pine forests. South. J. Appl. For. 23, 203–211] for annual basal

area growth was improved to incorporate random-effects for plots in a potential-modifier framework with stand-level and tree-level explanatory

variables. The fitted mixed-effects models were found to fit the data and to predict annual basal area growth better than the previous model forms

fitted using ordinary least-squares. There was also some evidence of heterogeneous errors, the effects of which could be corrected by using a

variance function in the estimation process. The revised parameter estimates from the selected mixed model could be utilized in a growth and yield

simulator that also takes appropriate dbh–height and mortality functions into account.

# 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Shortleaf pine (Pinus echinata Mill.) is second only to

loblolly pine (Pinus taeda L.) among the southern pines of the

United States in standing volume. It grows in 22 states over

more than 1,139,600 km2, ranging from southeastern New York

to eastern Texas (Willet, 1986). Previous shortleaf pine forest

growth studies include Murphy (1982, 1986), Murphy et al.

(1992), Lynch et al. (1991, 1999), and Lynch and Murphy

(1995). However, there is still relatively little published work

on shortleaf pine growth modeling compared to other southern

pines. An important aspect of shortleaf pine growth research is

development of basal area growth models for predicting

individual-tree growth rates. Lynch et al. (1999) have

developed a complete suite of growth equations to simulate

shortleaf pine annual growth based on different management
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scenarios. Their model parameter estimation was based on

ordinary least-squares (OLS) methods. Since typical sample

tree measurements are repeated in time and sample trees grow

together within plots representing stands, an assumption of

independent observations for individual trees under OLS

appears unrealistic. The problem of spatial and temporal

correlation among forestry measurements was well recognized

some time ago, for example by Ferguson and Leech (1978), and

West et al. (1984). However, methods of OLS assuming a

completely random sample have dominated the forest growth

and yield modeling literature until recently.

Previous growth models for shortleaf pine have generally

been fitted using ordinary or weighted least-squares or seemingly

unrelated regression methods. Shortleaf pine individual-tree

models fitted in the past using OLS have not accounted for plot-

level grouping of tree observations. Mixed-effects models can be

used to account for spatial and temporal correlation, providing

improved parameter estimates. Lappi and Bailey (1988)

presented mixed modeling as an alternative to the then

conventional methods of estimation for site index. Gregoire

et al. (1995) primarily discussed linear mixed models, but they

also considered issues relating to the importance of nonlinear
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Table 1

Midpoints and ranges for design variables for natural, even-aged shortleaf pine

study plots in western Arkansas and eastern Oklahoma (adapted from Lynch

et al., 1999)

Design variable Class midpoint Class range

Basal area (m2/ha) 7 �10.5

14 10.6–17.5

21 17.6–24.5

28 �24.6

Site index (m at age 50 years) 17 �17

18 17.1–19.9

21 20.0–22.9

23 �22.9

Age (years) 20 11–30

40 31–50

60 51–70

80 71–90
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mixed models in forest research. Gregoire and Schabenberger

(1996a) used a nonlinear mixed-effects approach for modeling

individual-tree cumulative bole volume of sweetgum from east

Texas. They later modeled cumulative bole volume by taking

spatial correlation between sections of a bole into account

(Gregoire and Schabenberger, 1996b). Trincado and Burkhart

(2006) used mixed-effects to model stem profiles and developed

a framework for calibration to localize the model using additional

data from the locality of interest. Budhathoki et al. (2008)

developed a mixed model for the shortleaf pine dbh–height

relationship using a dataset in which plot specific random-effects

were included.

A mixed model typically consists of both fixed-effects

parameters and random-effects parameters. When fitting these

parameters, data analysts are usually more interested in the

variance components associated with random coefficients than in

predictions of the random parameters themselves. Fixed-effects

coefficients are then assessed through selection of appropriate

explanatory variables. Inclusion of random-effects basically

helps to account for various sources of variation effectively,

thereby increasing the accuracy of testing and estimation for the

fixed-effects (Tao, 2002). Mixed models have been increasingly

used in forest growth and yield modeling. However, the majority

of the mixed model applications to date have used ‘‘stand-level’’

rather than individual-tree level growth models.

2. Methods

2.1. Data

Data collection from over 200 plots permanently established

in shortleaf pine natural stands located in western Arkansas and

eastern Oklahoma provided individual-tree measurements

including total height, crown height, diameter at breast height

and survival. These plots were established as part of a

collaborative study by the Department of Natural Resource

Ecology and Management at Oklahoma State University, and

the USDA Forest Service Southern Experiment Station, and

Ozark and Ouachita National Forests during the period 1985–

1987. Parameters and data ranges for the study design are given

in Table 1 (reported in English units by Lynch et al., 1999). This

design stipulated the establishment of circular fixed-radius

plots 810 m2 in size for each combination of site index, age and

stand basal area classes. An existing shortleaf pine thinning

study provided additional plots, which were treated to conform

to study design criteria (Lynch et al., 1999). Measurements of

diameter at breast height were available for over 8000 trees at

three measurement times. A representative sub-sample of

trees on each plot provided total height and crown height

measurements at each measurement time. Plot ages were

determined from ring counts of representative dominant and

codominant sample trees on each plot (Avery and Burkhart,

2002). Site index curves for naturally occurring shortleaf pine

developed by Graney and Burkhart (1973) were used to

determine each plot site index for base age 50 years. The three

repeated measurements were used to obtain annual basal area

growth for the corresponding two growth periods. Table 2
contains summary statistics for variables used in the develop-

ment of individual-tree shortleaf pine growth models.

2.2. Statistical analysis

The basic objective of this work is to utilize mixed modeling

techniques with growth data from three measurement times to

develop a basal area growth model with improved parameter

estimates relative to a model fitted by OLS to data from two

measurement times by Lynch et al. (1999). This basal area

growth model is based on a potential-modifier framework (e.g.,

Murphy and Shelton, 1996).

A basal area growth prediction model having the same

form as that given by Lynch et al. (1999) is presented below in

Model 1.

yi j ¼
b1B

b2
i j � ðb1Bi j=B

1�b2
max Þ

1þ expðb3 þ b4Bsi þ b5Ai þ b6Ri j þ b7Bi jÞ
þ ei j (1)

whereyij = average annual basal area growth (m2/year) of tree j in

plot i, Bij = basal area (m2) of tree j in plot i, Ai = stand age (year)

for plot i, Rij = ratio of quadratic mean stand diameter to the dbh

of tree j in plot i, Bsi = stand basal area (m2/ha) for plot i,

Bmax = 0.6566528736 m2 (the maximum expected basal area

for a shortleaf pine tree in managed stands from Hitch (1994)

corresponding to dbh = 91 cm), b1, . . ., b7 = model parameters,

eij = within-plot error, i.e. residual for tree j in plot i, eij � N(0,s2)

Lynch et al. (1999) fitted Model 1 using OLS with first two

measurements of the data summarized in Table 2. For

comparison purposes, the Model 1 was refitted using general-

ized least-squares (GLS) with the additional third measurement

data so that statistics such as Akaike information criterion

(AIC) and Bayesian information criterion (BIC) or Schwarz’s

Bayesian criterion (SBC) could be obtained with S-Plus gnls
function (Pinheiro and Bates, 2000). This makes it possible to

compare a GLS model to a mixed-effects model using the same

dataset.



Table 2

Summary of stand-level and tree variables recorded/observed in the study

Variable No. of observations Mean Standard deviation Minimum Maximum

Basal areaa (m2/ha) 208 21.33 6.68 6.27 29.62

Stand agea (year) 208 41.8 19.7 18.0 93.0

Site index (m at age 50 years) 208 17.5 2.9 12.2 26.6

Total height (m) 8,971 18.7 6.4 3.1 36.3

dbh (cm)

First measurement 8,284 18.8 9.9 2.8 61.9

Second measurement 8,092 20.8 9.9 3.0 64.5

Third measurement 7,591 23.1 10.2 3.8 67.6

Tree basal area (m2)

First measurement 8,284 0.0341 0.03385 0.00061 0.26339

Second measurement 8,092 0.04 0.03667 0.00114 0.27982

Third measurement 7,591 0.047 0.04036 0.00183 0.32177

Ratio of qmdb to dbh (R) 23,967 1.145 0.4549 0.438 7.362

AABAGc (m2/tree/year)

Overall 15,669 0.0013 0.00106 �0.00059 0.00925

First period 8,083 0.0012 0.00097 �0.00033 0.00643

Second period 7,586 0.0013 0.00114 �0.00059 0.00925

a At establishment.
b qmd, quadratic mean diameter.
c AABAG, average annual basal area growth.
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Model 1 was modified to include random-effects associated

with plots. The resulting Model 2, a nonlinear mixed model for

annual basal area growth with random-effect (b7) associated

with the fixed-effect (b7) can be written as:

yi j ¼
b1B

b2

i j � ðb1Bi j=B
1�b2
max Þ

1þ expðb3 þ b4Bsi þ b5Ai þ b6Ri j þ ðb7 þ b7iÞBi jÞ
þ ei j (2)

where b7i is a random parameter specific to ith plot associated

with mid-tree basal area fixed-effect coefficient b7 that

appears in the modifier (denominator), and rest of the

terms are described above in Model 1. It is assumed that

b7i�Nð0; s2
bÞ, eij � N(0, s2), and cov(b7i, eij) = 0. We would

usually be interested in an estimate of var(b7i), i.e. ŝ2
b, a

variance component describing the spread of the random

coefficients. Maximum likelihood methods were used to fit

Models 1 and 2 with S-Plus nlme library. AIC, BIC and

residual mean squares can be used to compare Models 1 and 2.

The variance component for random-effects can also be used

to test the statistical significance of a mixed model, Model 2,

versus a model without random-effects, Model 1. Modeling of

random-effects is expected to improve estimation and testing

of fixed-effect parameters that would help in selecting sui-

table explanatory variables in a growth model (Pinheiro and

Bates, 2000).

More complicated models were examined by fitting the

shortleaf pine data with plot-specific random-effects for other

associated fixed-effects coefficients (b1 and b6). Furthermore,

Model 2 was also modified to model heterogeneous errors in

order to evaluate whether this modification would improve fit to

the shortleaf pine basal area growth data. This modification
resulted in the following Model 3:

Model 2þ power variance function (3)

where error variance was modeled as var(eij) = s2jyijj2d with

one covariate using variance function g(yij,d) = jyijjd (yij is

covariate and d is power parameter). This model takes hetero-

geneous errors into account, so that a constant variance assump-

tion is not necessary. Tree basal area was selected as a covariate

in variance function for modeling errors in the basal area

growth model.

Model 3 was fitted with the S-Plus nlme library using the

varPower option (Pinheiro and Bates, 2000). Another

modification of Model 2, a two-level extension, can be written

as Model 4 below:

yi jk ¼
b1B

b2

i jk � ðb1Bi jk=B1�b2Þ
1þ expðb3 þ b4Bsik þ b5Aik þ b6Ri jk þ ðb7 þ b7ikÞBi jkÞ
þ ei jk (4)

where k = 1,2; the index k representing growth period. A

variance function to model possible heterogeneous errors

was added to Model 4 to obtain Model 5, in which tree basal

area was used as a covariate in the variance function similarly to

Model 3.

Model 4þ power variance function (5)

3. Results and discussion

Summaries of fit statistics and estimates of variance

components obtained from fitting the basal area growth models

are presented in Table 3.



Table 4

Parameter estimates and other associated statistics for Model 3 (total observa-

tions = 15,669, number of plots = 208, and residual d.f. = 15,455)

Parameter Estimate Standard error t-Value P-value

b1 0.035478 0.003601 9.85 <0.0001

b2 0.595154 0.022727 26.19 <0.0001

b3 �2.885529 0.128518 �22.45 <0.0001

b4 0.069907 0.001832 38.16 <0.0001

b5 0.006188 0.001175 5.26 <0.0001

b6 1.684492 0.053100 31.72 <0.0001

b7 �9.399331 1.334786 �7.04 <0.0001
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Table 3 indicates that Model 2 is better than Model 1 due to

much smaller AIC and BIC values in Model 2. Furthermore,

Model 2 has larger log-likelihood and smaller residual standard

deviation (S.D.) than Model 1. These statistics show that addition

of plot random-effects improves the model fit. A 95% confidence

interval for the b7 variance component S.D. is [6.505425,

8.432243], with a point estimate of 7.40644, indicating that the

component is significantly different from zero. When variance of

within-plot errors is modeled as a function of mid-tree basal area

instead of assuming constant variance, Model 3 is found to be an

improvement over Model 2. The estimated variance component

S.D. for Model 3 is larger (14.51838) than that of Model 2,

although the residual S.D. is slightly increased.

An attempt was made to fit a two-level hierarchical mixed

model (Model 4) with random parameters representing growth

period and plots within growth period. However, a convergence

problem was experienced when attempting to fit this two-level

model. Omission of stand age (with parameter b5) from the

model permitted successful parameter estimation. In the

ensuing discussion, we will continue to call this latter model

‘‘Model 4.’’ Model 4 appears to be slightly better than Model 2
Table 3

Summary statistics for fitted basal area growth models (total observations = 15,669

Model AIC BIC Log-likelihood

1 �186574.8 �186513.6 93295.4

2 �191021.0 �190952.1 95519.5

3 �198635.6 �198559.0 99327.8

4a �191757.0 �191688.1 95887.5

5a �198975.0 �198898.4 99497.5

ŝTðpÞb, Estimated standard deviation (S.D.) for variance component for plot rando

component for plot random-effects.
a Stand age dropped from the model due to convergence problem.

Fig. 1. Standardized residuals v
despite an increase in the number of random parameters to be

predicted. However, Model 3 is much better than Model 4 as

indicated by fit statistics and other information given in Table 3.

Model 5 is a substantial improvement over Model 4 due to

inclusion of variance modeling function. Models 3 and 5 show

that variance modeling to account for heterogeneous within-

plot errors improves the fit irrespective of the number of

hierarchical levels selected for mixed modeling (whether

single- or two-level).
, and number of plots = 208)

ŝTðpÞb ŝb Residual d.f. Residual S.D. ðŝÞ

– – 15,661 0.00062807

– 7.40644 15,455 0.00052973

– 14.51838 15,455 0.00327183

1.70427 6.19544 15,248 0.00050672

2.67147 10.72944 15,248 0.00303856

m-effects within growth period. ŝb, estimated standard deviation for variance

s. fitted values for Model 3.



Fig. 2. Standardized residuals vs. stand basal area for Model 3.
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The effects of spatially dependent errors were also explored

since coordinate data for each tree were available. Three

additional models using linear, exponential and Gaussian

correlation functions were studied. However, they did not

improve fit compared to Model 5. This suggests that the random

plot effect essentially explains most of the autocorrelation

among trees within plots. Trincado and Burkhart (2006) also

found evidence to suggest that the assumption of correlated

errors could be relaxed when appropriate tree-level random-

effects were included in a stem profile model. Additional details

concerning results from the spatial models can be found in

Budhathoki (2006).
Fig. 3. Standardized residuals
Because Model 5 does not include stand age as an independent

variable, it may be less desirable for practical application than

Model 3 despite some modest improvement in fit statistics.

Therefore, we prefer Model 3, a model which uses single level

random-effects and variance modeling.

3.1. Parameter estimates for Model 3

Parameter estimates and standard errors for Model 3 are

provided in Table 4. The estimated variance component S.D. for

b7 ðŝb7
Þ is 14.51838, and that for the residual ðŝeÞ is 0.00327183.

A 95% confidence interval for b7 variance component S.D. is
vs. site index for Model 3.



Fig. 4. Standardized residuals vs. stand age for Model 3.
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[12.69197, 16.60762], indicating that the variance component is

significantly different from zero. The power estimate ðd̂Þ in the

variance function for Model 3 is 0.57274 with 95% confidence

interval [0.56048, 0.58499]. Since the interval does not include

zero, we conclude that the use of a variance function is beneficial.

3.2. Residual analysis for Model 3

Standardized residuals from the selected model are plotted

against the predicted values in Fig. 1. The plot shows random

scatter of residuals indicating no violation of model assump-

tions. Comparison of residual plots from other models (e.g.,

those not using variance functions to achieve homogeneity of

variance) indicates that Model 3 is superior (residual plots of

other models not shown) and adequately explains variation in

annual basal area growth. Similarly, the residuals are plotted

against each of design criteria (stand age, site index and stand

basal area). These plots are presented in Figs. 2–4. Figs. 2–4

generally indicate mean residuals for all classes centered near

zero, indicating lack of bias for Model 3.

Fig. 2 shows a fairly similar distribution of residuals over

four initial stand basal area classes, although there is a slight

indication that there is high variability in the highest class

(28 m2/ha). Fig. 3 indicates fairly similar prediction of annual

growth values over site index classes except in the highest class

(23 m at base age 50 years).

It can be inferred from Fig. 4 that there is no clear prediction

bias over initial stand age classes. The graph further reveals that

variation in model residuals is higher in slightly younger stands.

However, the variability in residuals is decreased in older stands.

4. Conclusions

No shortleaf pine growth models involving random-effects

for plots have previously been published in a peer reviewed
journal for the Oklahoma and Arkansas region, except a model

for diameter–height relationship by Budhathoki et al. (2008).

There has also been relatively little work in mixed modeling of

basal area increment for other tree species in the region. This

study provides evidence that individual-tree growth models

with plot random-effects are superior to those fitted with OLS

methods (Lynch et al., 1999), due to statistical properties

associated with the use of a variance component for plot

random-effects. The mixed models are also more attractive for

the reasons of interpretation and applicability of the parameter

estimates. Model 1 in which parameters were fitted by GLS

ignores grouping of trees by plots, while the mixed models

conform more closely to actual data structure in which

individual-tree measurements are grouped by plots.

The main objective of the fitted models is prediction of the

response variables rather than interpretation of individual fixed-

effect coefficients. Fixed-effects parameter estimates are given

for Model 3, and these could be used in prediction of annual

basal area growth in a distance-independent individual-tree

growth simulator (e.g., Huebschmann et al., 1998). Residual

analysis showed that Model 3 made reasonable predictions over

the range of design criteria, without evidence of systematic

bias. Overall, there was some evidence of residual variance

increase with tree size classes, which was corrected with

variance modeling of heterogeneous within-plot errors. Despite

somewhat improved statistical properties, Model 5 is not as

appealing for practical applications since it does not include age

as an independent variable.

Due to limited observations over time (repeated measure-

ments), serial correlations among measurements could not be

addressed through modeling of within-subject covariance

matrix over time. However, part of temporal correlation was

taken into account by using first differences to compute growth

between observations for two time points. As coordinates were

recorded for each tree, the possibility of spatial correlation for
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individual-tree errors was also investigated. However, spatial

correlation was not statistically significant in presence of plot

random-effects. Trincado and Burkhart (2006) suggest that the

correlated error assumption could be relaxed for predictive

purposes in the presence of tree-level random effects with a

stem profile model estimated using multiple measurements on

sample trees. Model 3 is preferred for improved predictions

of annual basal area growth for individual shortleaf pine

trees occurring in natural stands in the Oklahoma and Arkansas

region.
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